Multichannel speed sensor

with various signal pattern combinations

Technical information

Description

- Application-proven speed sensor using magnetic scanning
- Maintenance- and wear-free operation by contactless rotary motion measuring
- Wide measuring range for reliable detection of creeping without pulse loss and also for fast rotary motion
- Detection of direction by evaluating two channels with 90° phase offset
- Constant duty cycle of output signals

Features

- Target wheel module: 1.00 to 3.50
- Degree of protection: IP 68 sensor housing
- in accordance with DIN EN 50155:2018-05

Advantages

- Integration of different signal patterns in the familiar flange housing
- Perfectly suited for retrofits and for retrofitting additional systems
- No mechanical adjustments required
- Cost-efficient due to reduced cabling effort (cables, cable protection, connectors)
- Electrically isolated rotational speed systems for operation on different supply voltages and control systems
- Large permissible measuring distance facilitates design and assembly

Field of application

- Rail vehicle industry
 - Traction monitoring
 - Anti-slip protection
 - Motor speed
 - Anti-skid protection
 - Automatic Train Protection
 - Odometry

Do you have special requirements regarding flange shape, shaft length, number of channels, cable protection, cable outlet, connector assembly or EMC concept?

Then talk to us. Our experts can design the optimal solution for your application from an extensive modular system and will be pleased to advise you how to customize your solution in the most cost-efficient way.

Write to support@lenord.de or call +49 208 9963-215.

Lenord, Bauer & Co. GmbH Dohlenstraße 32 46145 Oberhausen, Germany

Version 28-07-2021

Voltage output Technical data

	D	E	V
Electrical data		l	1
Supply voltage U _B (reverse polarity protected)	10 to 30 V DC		
Current consumption I _B (without load)	≤ 30 mA		
Output signal (short-circuit-proof)	Square-wave signal	S	
Output signal level High ⁽¹⁾	≥ U _B - 1.5 V		
Output signal level Low ⁽¹⁾	≤ 1.0 V		
Output current per channel	≤ 20 mA		
Frequency range	0 to 20 kHz		
Duty cycle	50 % ± 10 % ⁽²⁾		
Phase offset	typ. 90°	-	typ. 90°
Mechanical data		·	•
Sensor tube material	Stainless steel		
Flange material	Stainless steel		
Sensor weight	approx. 500 g		
(incl. 2 m cable)			
Cable	T	(2)	
Cable	halogen-free and so	reened ⁽³⁾	
Cable diameter	8.0 ± 0.3 mm		
Cable cross section	12 x 0.34 mm ²		
Minimum bending radius static/dynamic	24 mm/40 mm		
Screening note	Cable screen is con tively in the sensor	Cable screen is connected directly or, as an option, capaci- tively in the sensor	
Environmental testing	Environmental testing		
Working and operating temperature	-40 °C to +120 °C		
Storage temperature	-40 °C to +120 °C	-40 °C to +120 °C	
Dielectric strength	500 V AC/750 V DC	(DIN EN 50155:2018	3-05)
Electromagnetic compatibility ⁽⁴⁾	DIN EN 50121-3-2:2	DIN EN 50121-3-2:2017-11; DIN EN 50121-3-2/A1:2020-11	
Degree of protection on measuring side ⁽⁵⁾	IP 68		
Vibration resistance	DIN EN 61373:2011	-04 cat. 3	
Shock resistance	DIN EN 61373-2011-04 cat. 3		
MTTF value	2,000,000 h at 55 °C		
Requirements for the target wheel			
Material	Ferromagnetic steel		
Tooth form	Involute gear teeth as per DIN 867 (others upon request)		
Width	≥ 15 mm (smaller upon request)		
Module m	1.00/1.25/1.50/1.75/2.00/2.25/2.50/3.00/3.25/3.50		
Air gap	see air gap table, page 9		

⁽¹⁾ depending on output current and temperature

⁽²⁾ applies to operation with nominal air gap and toothing as per DIN 867

⁽³⁾ Specification upon request

 $^{^{\}rm (4)}$ $\,$ Observe EMC notes in the mounting/operating instructions

⁽⁵⁾ Degree of protection on the cable outlet side depends on cable gland or cable protection

Voltage output

Signal pattern	DM	EM
Electrical data		
Supply voltage U _B (reverse polarity protected)	10 20 V DC	
Current consumption I _B (without load)	≤ 12 mA per channel	
Output signal (short-circuit-proof)	Square-wave signals	
Output signal level High ⁽¹⁾	≥ U _B - 1.8 V	
Output signal level Low ⁽¹⁾	≤ 1.5 V	
Output current per channel	≤ 10 mA	
Frequency range	0 8 kHz	
Duty cycle	50 % ± 10 % ⁽²⁾	
Phase offset	typ. 90°	-
Mechanical data		•
Sensor tube material	Stainless steel	
Flange material	Stainless steel	
Sensor weight	approx. 500 g	
(incl. 2 m cable)		
Environmental testing	T	
Working and	-40 °C to +85 °C	
Operating temperature	40 °C to 1400 °C	
Storage temperature		
	500 V AC/750 V DC (DIN	NEN 50155:2018-05)
compatibility ⁽³⁾	DIN EN 50121-3-2:2017- A1:2020-11	11; DIN EN 50121-3-2/
Degree of protection on measuring side ⁽⁴⁾	IP 68	
Vibration resistance	DIN EN 61373:2011-04 d	at. 3
Shock resistance	DIN EN 61373-2011-04 d	cat. 3
MTTF value	2,000,000 h at 55 °C	
Requirements for the target wheel	,	
Material	Ferromagnetic steel	
Tooth form	Involute gear teeth as pe request)	r DIN 867 (others upon
Width	≥ 15 mm (smaller upon r	equest)
Module m	1.00/1.25/1.50/1.75/2.00	/2.25/2.50/3.00/3.25/3.50
Air gap	see air gap table, page 9	

 ⁽¹⁾ depending on output current and temperature
 (2) applies to operation with nominal air gap and toothing as per DIN 867

⁽³⁾ Observe EMC notes in the mounting/operating instructions

⁽⁴⁾ Degree of protection on the cable outlet side depends on cable gland or cable protection

Current output

	DI	VI	EI
Electrical data			
Supply voltage U _B (reverse polarity protected)	10 20 V DC		
Output signal (short-circuit-proof)	Square-wave signals	6	
Output signal level High ⁽¹⁾	typ. 14 mA		
Output signal level Low ⁽¹⁾	typ. 6 mA		
Output current per channel	≤ 16 mA		
Frequency range	0 12 kHz		
Duty cycle	50 % ± 10 % ⁽²⁾		
Phase offset	typ. 90°		-
Mechanical data			
Sensor tube material	Stainless steel		
Flange material	Stainless steel		
Sensor weight	approx. 500 g		
(incl. 2 m cable)			
Environmental testing	1		
Working and	-40 °C to +120 °C		
operating temperature			
Storage temperature	-40 °C to +120 °C		
Dielectric strength	500 V AC/750 V DC (DIN EN 50155:2018-05)		
Electromagnetic compatibility ⁽³⁾	DIN EN 50121-3-2:2017-11; DIN EN 50121-3-2/A1:2020-11		
Degree of protection on measuring side ⁽⁴⁾	IP 68		
Vibration resistance	DIN EN 61373:2011-04 cat. 3		
Shock resistance	DIN EN 61373-2011-04 cat. 3		
MTTF value	2,000,000 h at 55 °C		
Requirements for the target wheel			
Material	Ferromagnetic steel		
Tooth form	Involute gear teeth a	s per DIN 867 (others	s upon request)
Width	≥ 15 mm (smaller upon request)		
Module m	1.00/1.25/1.50/1.75/2.00/2.25/2.50/3.00/3.25/3.50		
Air gap	see air gap table, pa	ge 9	

 ⁽¹⁾ depending on output current and temperature
 (2) applies to operation with nominal air gap and toothing as per DIN 867
 (3) Observe EMC notes in the mounting/operating instructions

⁽⁴⁾ Degree of protection on the cable outlet side depends on cable gland or cable protection

System combinations

Signal pattern D/D (type code option 01)		
System 1		2 electrically isolated voltage signals with 90° phase offset
System 2		2 electrically isolated voltage signals with 90° phase offset

Signal pattern D/E (type code option 02)		
System 1		2 electrically isolated voltage signals with 90° phase offset
System 2		1 voltage signal

Signal pattern E/E/E/(type code option 03)		
System 1		1 voltage signal
System 2		1 voltage signal
System 3		1 voltage signal
System 4		1 voltage signal

Signal pattern V/E/E (type code option 04)		
System 1		2 voltage signals with 90° phase offset
System 2		1 voltage signal
System 3		1 voltage signal

Signal pattern V/E (type code option 05)		
System 1		2 voltage signals with 90° phase offset
System 2		1 voltage signal

Signal pattern V/V (type code option 06)		
System 1		2 voltage signals with 90° phase offset
System 2		2 voltage signals with 90° phase offset

Signal pattern V/EM/EM (type code option 07)		
System 1		2 voltage signals with 90° phase offset
System 2	7V < 1 Hz	1 voltage signal with standstill voltage
System 3	7V < 1 Hz	1 voltage signal with standstill voltage

Signal pattern V/EM (type code option 09)		
System 1		2 voltage signals with 90° phase offset
System 2	7V <1 Hz	1 voltage signal with standstill voltage

Signal pattern D/EM (type code option 10)		
System 1		2 electrically isolated voltage signals with 90° phase offset
System 2	7V<1 Hz	1 voltage signal with standstill voltage

Sig	Signal pattern V/V/V (type code option 11)											
System 1		2 voltage signals with 90° phase offset										
System 2		2 voltage signals with 90° phase offset										
System 3		2 voltage signals with 90° phase offset										

System combinations

Signal pattern DI/D (type code option 12)									
System 1		2 electrically isolated current signals with 90° phase offset							
System 2		2 electrically isolated voltage signals with 90° phase offset							

Signal pattern EI/EI/E/E (type code option 13)									
System 1		1 current signal							
System 2		1 current signal							
System 3		1 voltage signal							
System 4		1 voltage signal							

Signal pattern VI/E/E (type code option 14)										
System 1		2 current signals with 90° phase offset								
System 2		1 voltage signal								
System 3		1 voltage signal								

Signal pattern DI/DI (type code option 16)									
System 1		2 electrically isolated current signals with 90° phase offset							
System 2		2 electrically isolated current signals with 90° phase offset							

Signal pattern EI/EI/EI (type code option 17)										
System 1		1 current signal								
System 2		1 current signal								
System 3		1 current signal								
System 4		1 current signal								

Signal pattern VI/EI (type code option 18)								
System 1		2 current signals with 90° phase offset						
System 2		1 current signal						

Signal pattern VI/VI (type code option 19) System 1 _______ 2 current signals with 90° phase offset System 2 _______ 2 current signals with 90° phase offset

Technical drawings

All dimensions in mm, general tolerance DIN ISO 2768 mK

Dimensional drawing

Technical drawings

All dimensions in mm, general tolerance DIN ISO 2768 mK

Assembly drawing

Hole pattern

⁽¹⁾ depending on signal pattern and module

⁽²⁾ Looking at the visible surface, the signals are output forward when the target wheel rotates clockwise.

Module	Permissible air gap	Nominal air gap	max. permissible radial runout				
1.00	0.2 to 1.4 mm	0.5 mm					
1.25	0.2 to 1.4 mm	0.5 mm					
1.50	0.2 to 1.8 mm	0.7 mm					
1.75	0.2 10 1.0 11111	0.7 11111					
2.00	0.2 to 2.2 mm						
2.25	0.2 10 2.2 11111		± 0.3 mm				
2.50							
2.75	0.2 2.8 mm	0.7 mm					
3.00	0.2 2.0 11111						
3.25							
3.50	0.2 3.0 mm						

Air gap table

Type code GEL 247MCx

Type code GEL 247MCx

247MCv						п					
						ц	Preassembled with Harting connector				
						S	Special design				
						0	Elving lead				
						Sabit	Tailoring				
					ĸ	Cable	e gland without cable protection				
				C Faton hose type $FC045-8$							
					B	Anac	onda Sealtite, type HFX-V0348.010.1				
					Δ	ARR	flexible conduit_type XPCST-12BG				

				~~~~			e length				
			U	Cable S	cre		connected capacitively to the sensor housing				
			L	Cable s	cre	en is c	connected to the sensor housing				
				Cable s	scre	en					
		WI350	IVI	= 3.50 n	nm						
		M325	IVI	= 3.25 n	nm						
		M300	M	= 3.00 m	nm						
		M250	M	= 2.50  m	nm						
		M225	M	= 2.25 n	nm						
		M200	M	VI = 2.00 mm							
		M175	IVI	$v = 1.75 \mathrm{mm}$							
		M150	IVI	A = 1.50 mm							
		M125	IVI	= 1.25  m	nm						
		M100	IVI M	= 1.00  m	nm						
		M400		odule m							
	19	System	CO	mbinatio	n 2	x sign	nal pattern VI				
	18	System	co	mbinatio	n si	gnal p	battern VI with signal pattern El				
	17	System	CO	mbinatio	n 4	x sign	al pattern El				
	16	System	co	mbinatio	n 2	x sign	al pattern DI				
	15	System	co	mbinatio	n si	gnal p	Dattern D with signal pattern VI				
	14	System	со	mbinatio	n 2	x sign	nai pattern ⊢ with signal pattern VI				
	13	System	со	mbinatio	n 2	x sign	al pattern E with 2 x signal pattern El				
	12	System	со	mbinatio	n si	gnal p	battern D with signal pattern DI				
	11	System	со	mbinatio	n 3	x sign	nal pattern V (for module 2.00 only)				
	10	System	со	mbinatio	n si	gnal p	pattern D with signal pattern EM				
	09	System	со	mbinatio	n si	gnal p	pattern V with signal pattern EM				
	08	System	n combination signal pattern V with signal pattern DM								
	07	System	со	mbinatio	n si	gnal p	attern V combined with 2 x signal pattern EM				
	06	System	со	mbinatio	n 2	x sign	nal pattern V				
	05	System	со	mbinatio	n si	gnal p	attern V with signal pattern E				
	04	System	со	mbinatio	n si	gnal p	attern V with 2 x signal pattern E				
	03	System	со	mbinatio	n of	4 x s	ignal pattern E				
	02	System	со	mbinatio	n si	gnal p	battern D with signal pattern E				
	01	System	co	mbinatio	n 2	x sign	al pattern D				
		Signal	al pattern option								

### **Core assignment**

#### Pin assignment Harting connector HAN HPR (type code option H)



Pin assignment Harting connector		1	2	3	4	5	6	7	8	9	10	11	12	
	Wire co	lor												
	Signal pattern	Type code options	VT	PK-BU	GY	YE	BU	RD-BU	PK	WH	RD	GN	BK	BN
	D/D	1	track B1	GND2	GND3	track A2	GND1	U _{B2}	U _{B3}	track B2	U _{B1}	U _{B4}	track A1	GND4
	D/E	2	track B1	GND2	GND3	track A2	GND1	U _{B2}	U _{B3}	n. c.	U _{B1}	n. c.	track A1	n. c.
t	E/E/E/E	3	track B1	GND2	GND3	track A2	GND1	U _{B2}	U _{B3}	track B2	U _{B1}	U _{B4}	track A1	GND4
utp	V/E/E	4	track B1	n. c.	GND3	track A2	GND1	n. c.	U _{B3}	track B2	U _{B1}	U _{B4}	track A1	GND4
ge c	V/E	5	track B1	n. c.	GND3	track A2	GND1	n. c.	U _{B3}	n. c.	U _{B1}	n. c.	track A1	n. c.
oltaç	V/V	6	track B1	n. c.	GND3	track A2	GND1	n. c.	U _{B3}	track B2	U _{B1}	n. c.	track A1	n. c.
×	V/EM/EM	7	track B1	n. c.	GND3	track A2	GND1	n. c.	U _{B3}	track B2	U _{B1}	U _{B4}	track A1	GND4
	V/DM	8	track B1	n. c.	GND3	track A2	GND1	n. c.	U _{B3}	track B2	U _{B1}	U _{B4}	track A1	GND4
	V/EM	9	track B1	n. c.	GND3	track A2	GND1	n. c.	U _{B3}	n. c.	U _{B1}	n. c.	track A1	n. c.
	D/EM	10	track B1	GND2	GND3	track A2	GND1	U _{B2}	U _{B3}	n. c.	U _{B1}	n. c.	track A1	n. c.
	V/V/V	11	track A2	GND2	GND3	track B1	GND1	U _{B2}	U _{B3}	track B2	U _{B1}	track A3	track A1	track B3
	DI/D	12	n. c.	track B1	GND3	track A2	track A1	U _{B2}	U _{B3}	track B2	U _{B1}	U _{B4}	n. c.	GND4
	EI/EI/E/E	13	n. c.	track B1	GND3	track A2	track A1	U _{B2}	U _{B3}	track B2	U _{B1}	U _{B4}	n. c.	GND4
tput	VI/E/E	14	n. c.	track B1	GND3	track A2	track A1	n. c.	U _{B3}	track B2	U _{B1}	U _{B4}	n. c.	GND4
tou	VI/D	15	n. c.	track B1	GND3	track A2	track A1	n. c.	U _{B3}	track B2	U _{B1}	U _{B4}	n. c.	GND4
ren	DI/DI	16	n. c.	track B1	track A2	n. c.	track A1	U _{B2}	U _{B3}	n. c.	U _{B1}	U _{B4}	n. c.	track B2
Cur	EI/EI/EI/EI	17	n. c.	track B1	track A2	n. c.	track A1	U _{B2}	U _{B3}	n. c.	U _{B1}	U _{B4}	n. c.	track B2
	VI/EI	18	n. c.	track B1	track A2	n. c.	track A1	n. c.	U _{B3}	n. c.	U _{B1}	n. c.	n. c.	n. c.
	VI/VI	19	n. c.	track B1	track A2	n. c.	track A1	n. c.	U _{B3}	n. c.	U _{B1}	n. c.	n. c.	track B2

Cable screen is connected directly or, as an option, capacitively.

#### Accessories

ZB247XM8 (2 screws M8 x 20 EN ISO 4762 with washer and spring washer)

If you decide to have our speed sensors assembled with cable protection and connectors, we recommend using the preferred types shown in the figure. The required materials are field-tested in large quantities and are always in stock This guarantees the fastest delivery times with the best material availability and the lowest prices due to large purchasing volumes.

If you need help in finding the product you need, please contact our internal sales team at support@lenord.de or call +49 208 9963-215.



Lenord, Bauer & Co. GmbH Dohlenstraße 32 46145 Oberhausen, Germany Phone: +49 208 9963–0 Fax: +49 208 676292 Internet: www.lenord.com E-Mail: info@lenord.de

Right to technical changes and errors reserved.